Base implements JsonSerializable
Table of Contents
Interfaces
- JsonSerializable
Methods
- __construct() : mixed
- buildFeaturesVector() : array<string|int, mixed>|false
- Should return feature vector for the crm entity.
- getCachedTrainingSetSize() : array<string|int, mixed>
- Cached version of getTrainingSetSize()
- getCurrentTraining() : array<string|int, mixed>
- Returns current training fields
- getMlModel() : Model|null
- getModelId() : int|false
- Returns id of the model.
- getModelNames() : array<string|int, string>
- Should return array of available name for the model type.
- getName() : string
- Return name of the model.
- getPossibleFields() : array<string|int, mixed>
- Should return array of field descriptions.
- getPredictionSet() : array<string|int, mixed>
- getRowIdField() : string|false
- Return name of the row id field in the feature vector.
- getState() : string|false
- getTargetField() : string|false
- Return name of the target field in the feature vector.
- getTitle() : string
- Should return title for this model
- getTrainingSet() : array<string|int, int>
- Should return array of the ids of the entities, that should be used for building the next part of the training set
- getTrainingSetSize() : array<string|int, mixed>
- Should return count of successful and failed records in the training set for this model.
- hasAccess() : bool
- isReady() : bool
- Returns true if model is ready for real-time prediction.
- jsonSerialize() : array<string|int, mixed>
- setMlModel() : void
- unassociateMlModel() : void
Methods
__construct()
public
__construct(string $name) : mixed
Parameters
- $name : string
buildFeaturesVector()
Should return feature vector for the crm entity.
public
abstract buildFeaturesVector(int $entityId) : array<string|int, mixed>|false
Parameters
- $entityId : int
-
Id of the entity.
Return values
array<string|int, mixed>|falsegetCachedTrainingSetSize()
Cached version of getTrainingSetSize()
public
getCachedTrainingSetSize() : array<string|int, mixed>
Return values
array<string|int, mixed>getCurrentTraining()
Returns current training fields
public
getCurrentTraining() : array<string|int, mixed>
Tags
Return values
array<string|int, mixed>getMlModel()
public
getMlModel() : Model|null
Return values
Model|nullgetModelId()
Returns id of the model.
public
getModelId() : int|false
Return values
int|falsegetModelNames()
Should return array of available name for the model type.
public
static getModelNames() : array<string|int, string>
Return values
array<string|int, string>getName()
Return name of the model.
public
getName() : string
Return values
stringgetPossibleFields()
Should return array of field descriptions.
public
abstract getPossibleFields() : array<string|int, mixed>
Return values
array<string|int, mixed>getPredictionSet()
public
abstract getPredictionSet(mixed $fromId, mixed $limit) : array<string|int, mixed>
Parameters
- $fromId : mixed
- $limit : mixed
Return values
array<string|int, mixed>getRowIdField()
Return name of the row id field in the feature vector.
public
getRowIdField() : string|false
Return values
string|falsegetState()
public
getState() : string|false
Return values
string|falsegetTargetField()
Return name of the target field in the feature vector.
public
getTargetField() : string|false
Return values
string|falsegetTitle()
Should return title for this model
public
abstract getTitle() : string
Return values
stringgetTrainingSet()
Should return array of the ids of the entities, that should be used for building the next part of the training set
public
abstract getTrainingSet(int $fromId, int $limit) : array<string|int, int>
Parameters
- $fromId : int
-
Id of the starting entity.
- $limit : int
-
Maximum count of the records in the training subset.
Return values
array<string|int, int>getTrainingSetSize()
Should return count of successful and failed records in the training set for this model.
public
abstract getTrainingSetSize() : array<string|int, mixed>
Return values
array<string|int, mixed>hasAccess()
public
abstract hasAccess([int $userId = 0 ]) : bool
Parameters
- $userId : int = 0
Return values
boolisReady()
Returns true if model is ready for real-time prediction.
public
isReady() : bool
Return values
booljsonSerialize()
public
jsonSerialize() : array<string|int, mixed>
Return values
array<string|int, mixed>setMlModel()
public
setMlModel(Model $mlModel) : void
Parameters
- $mlModel : Model
unassociateMlModel()
public
unassociateMlModel() : void